Staphylococcal bacteraemia: finding the path of least persistence

Nisha Ranganathan, Rebecca Johnson, Andrew M. Edwards

Background
- Despite the falling incidence of MRSA bacteraemia, the rate of MSSA bacteraemia is rising\(^1\)
- In a significant proportion of cases, bacteraemia persists despite appropriate therapy\(^2\)
- Challenges to treatment arise as under the twin threats of antibiotics and the immune system, bacteria become dormant, metabolically inactive and are thus antibiotic tolerant\(^3\)
- The regulator of the stress response in \(S.\ aureus\) is SigB, regulates entry into dormancy\(^4\)
- Aim: To characterise the role of SigB and its effector molecules in the survival of \(S.\ aureus\) in a clinical bacteraemia model

The host environment modulates antibiotic susceptibility

Figure 1. Blood modulates antibiotic susceptibility of \(S.\ aureus\) in exposure to Cloxacillin (A), Gentamicin (B), Ciprofloxacin (C), Vancomycin (D), Cindamycin (E). With the exception of (B) the addition of antibiotic failed to significantly enhance killing compared to blood alone, however antibiotics functioned in serum.

SigB promotes survival in blood

Figure 2. (A) Titration concentration of AHT in the complemented sigB mutant resulted in increasing sigB expression, as evidenced by increase in pigment production and (B) fibronecctin binding (both sigB dependent phenotypes). (C) Increasing survival of \(S.\ aureus\) in blood on increasing induction of sigB expression with AHT in complemented mutant but not in empty plasmid vector.

SigB modulates antibiotic susceptibility in the host context

Figure 3. Increasing sigB expression increases survival of \(S.\ aureus\) in blood plus cloxacillin ciprofloxacin and gentamicin (A, B, C) but not on exposure to blood plus vancomycin or cindamycin (D, E).

SigB regulated genes modulate survival in blood +/- antibiotics

Figure 4. (A) sigB effectors \(SA2440\) and \(SA2452\) promote survival in blood infection model. Increasing expression of \(SA2452\) but not \(SA2440\) increases survival in blood alone (A) and in blood plus cloxacillin (B) in a dose dependent manner. Increasing expression of both genes increases survival on exposure to ciprofloxacin (C). \(SA2440\) but not \(SA2452\) promotes survival on exposure to gentamicin (D).

Conclusions
- Blood appears to have an inhibitory effect on the activity of certain antibiotics.
- SigB promotes survival in both blood alone plus in combination with cloxacillin, ciprofloxacin and gentamicin.
- Two SigB regulated genes have been identified that promote survival in an antibiotic specific manner.
- Rethinking therapy in the context of the host-pathogen-drug interactions may lead to innovative solutions to enhance existing treatment strategies.

References

Acknowledgements
Members of the first floor of the Centre for Molecular Bacteriology and Infection at Imperial College London, and the Edwards group in particular, are acknowledged for their invaluable support. This work is funded by the MRC as part of a clinical research training fellowship.