ACQUISITION AND TRANSMISSION NETWORKS OF ENTEROCOCCUS FAECIUM REVEALED BY WHOLE GENOME SEQUENCING: A LONGITUDINAL COHORT STUDY

Theodore Gouliouris
University of Cambridge, Department of Medicine
FIS—December 2017
Declaration

- Wellcome Trust Clinical Research Training Fellowship
- Health Innovation Challenge Fund
- Copan Italia Spa for generously providing FLOQSwabs
- No other conflicts of interest to declare

This publication presents independent research supported by the Health Innovation Challenge Fund (WT098600, HICF-T5-342), a parallel funding partnership between the Department of Health and Wellcome Trust. The views expressed in this publication are those of the author(s) and not necessarily those of the Department of Health or Wellcome Trust.
E. faecium as a human pathogen

- Leading cause of infection in immunocompromised and critically ill patients
- *E. faecium*: Healthcare-associated lineages are multidrug resistant – ampicillin, quinolone – and can acquire resistance to vancomycin
- Previously known as CC17, now named clade A1
- Whole genome sequencing of *E. faecium* bloodstream infection isolates shows evidence of hospital transmission
- Detailed epidemiological studies lacking

Raven *et al.* (CID 2017) CUH *E. faecium* bacteraemias 2006-12
Aims

Conduct a prospective observational study over 6 months on two adult Haematology wards at Cambridge University Hospitals (CUH) from May till November 2015

• Determine the rate of carriage of *E. faecium* in the Haematology inpatient population at CUH and the level of environmental contamination

Use whole genome sequencing to:

• Determine rates of acquisition and transmission of *E. faecium*
Methods - Participants

- Setting: Tertiary referral centre for Haemato-oncology/regional haematopoietic stem cell transplant unit
- Two wards
 - 16-bedded unit (11 single-rooms), HEPA-filtered, positive pressure
 - 11-bedded unit (4 single-rooms)
- Informed consent required
- Stool samples on admission, weekly and on discharge
- If no stool available on discharge or if patient did not participate in study, environmental sample was obtained on discharge
Methods - Stool

Stool sample

Unselected enterococcal culture (admission sample only)

- Direct culture (SB)

- Enriched culture (Enterococcosel broth)

 Subculture (SB) plate

 Pick 2 isolates

 Save 1 isolate if ASVSEfm

 Isolate sequenced

 5 isolates sequenced
 - if first positive sample and no VRE grown
 - from all samples up to first VRE growth in patients who acquired VRE
 - 1 isolate sequenced from all other samples

Ampicillin resistance selective culture

- Direct culture (Amp-Enterococcosel) plate

 Enriched culture (Enterococcosel broth)

 Subculture (Amp Enterococcosel) plate

 Pick 5 isolates

 Save up to 5 isolates if ARVSEfm

Vancomycin resistance selective culture

- Direct culture (VRE)

 Enriched culture (Van-Enterococcosel)

 Direct culture (VRE)

 Subculture (VRE) plate

 Pick 5 isolates

 Save up to 5 isolates if VREfm

 5 isolates sequenced if first positive sample
 1 isolate sequenced from all other samples
Methods - Stool

1. **Stool sample**
 - **Unselected enterococcal culture (admission sample only)**
 - Direct culture (SB)
 - Enriched culture (Enterococcosel broth)
 - Subculture (SB) plate
 - Pick 2 isolates
 - Save 1 isolate if ASVSEfm
 - Isolate sequenced
 - 5 isolates sequenced
 - if first positive sample and no VRE grown
 - from all samples up to first VRE growth in patients who acquired VRE
 - 1 isolate sequenced from all other samples
 - Direct culture (SB)
 - Subculture (SB) plate
 - Pick 5 isolates
 - Save up to 5 isolates if ARVSEfm
 - 5 isolates sequenced if first positive sample
 - 1 isolate sequenced from all other samples
 - Ampicillin resistance selective culture
 - Direct culture (Amp-Enterococcosel) plate
 - Enriched culture (Enterococcosel broth)
 - Subculture (Amp Enterococcosel) plate
 - Pick 5 isolates
 - Save up to 5 isolates if VREfm
 - 5 isolates sequenced if first positive sample
 - Vancomycin resistance selective culture
 - Direct culture (VRE)
 - Enriched culture (Van-Enterococcosel)
 - Subculture (VRE) plate
 - Pick 5 isolates
 - Save up to 5 isolates if VREfm
 - 5 isolates sequenced if first positive sample
 - 1 isolate sequenced from all other samples

2. **Unselected enterococcal culture (admission sample only)**
 - Direct culture (SB)
 - Enriched culture (Enterococcosel broth)
 - Subculture (SB) plate
 - Pick 2 isolates
 - Save 1 isolate if ASVSEfm
 - Isolate sequenced
 - 5 isolates sequenced
 - if first positive sample and no VRE grown
 - from all samples up to first VRE growth in patients who acquired VRE
 - 1 isolate sequenced from all other samples
 - Direct culture (SB)
 - Subculture (SB) plate
 - Pick 5 isolates
 - Save up to 5 isolates if ARVSEfm
 - 5 isolates sequenced if first positive sample
 - 1 isolate sequenced from all other samples
 - Ampicillin resistance selective culture
 - Direct culture (Amp-Enterococcosel) plate
 - Enriched culture (Enterococcosel broth)
 - Subculture (Amp Enterococcosel) plate
 - Pick 5 isolates
 - Save up to 5 isolates if VREfm
 - 5 isolates sequenced if first positive sample
 - Vancomycin resistance selective culture
 - Direct culture (VRE)
 - Enriched culture (Van-Enterococcosel)
 - Subculture (VRE) plate
 - Pick 5 isolates
 - Save up to 5 isolates if VREfm
 - 5 isolates sequenced if first positive sample
 - 1 isolate sequenced from all other samples
Methods - Stool

1. Stool sample
 - Unselected enterococcal culture (admission sample only)
 - Direct culture (SB)
 - Enriched culture (Enterococcus broth)
 - Subculture (SB) plate
 - Pick 2 isolates
 - Save 1 isolate if ASVSEfm
 - Isolate sequenced
 - Pick 5 isolates
 - Save up to 5 isolates if ARVSEfm
 - 5 isolates sequenced
 - if first positive sample and no VRE grown
 - from all samples up to first VRE growth in patients who acquired VRE
 - 1 isolate sequenced from all other samples

 - Ampicillin resistance selective culture
 - Direct culture (Amp-Enterococcus) plate
 - Enriched culture (Enterococcus broth)
 - Subculture (Amp Enterococcus) plate
 - Pick 5 isolates
 - Save up to 5 isolates
 - Vancomycin resistance selective culture
 - Direct culture (VRE)
 - Enriched culture (Van-Enterococcus)
 - Subculture (VRE) plate
 - Pick 5 isolates
 - Save up to 5 isolates if VREfm
 - 5 isolates sequenced if first positive sample
 - 1 isolate sequenced from all other samples
Methods - Stool

- Stool sample
 - Unselected enterococcal culture (admission sample only)
 - Direct culture (SB)
 - Enriched culture (Enterococcosel broth)
 - Subculture (SB) plate
 - Pick 2 isolates
 - Save 1 isolate if ASVSEfm
 - Isolate sequenced
 - Ampicillin resistance selective culture
 - Direct culture (Amp-Enterococcosel) plate
 - Enriched culture (Enterococcosel broth)
 - Subculture (Amp Enterococcosel) plate
 - Pick 5 isolates
 - Save up to 5 isolates if ARVSEfm
 - 5 isolates sequenced
 - if first positive sample and no VRE grown
 - from all samples up to first VRE growth in patients who acquired VRE
 - 1 isolate sequenced from all other samples
 - Vancomycin resistance selective culture
 - Direct culture (VRE)
 - Enriched culture (Van-Enterococcosel)
 - Subculture (VRE) plate
 - Pick 5 isolates
 - Save up to 5 isolates if VREfm
 - 5 isolates sequenced if first positive sample
 - 1 isolate sequenced from all other samples
Methods - Stool

Stool sample

- Unselected enterococcal culture (admission sample only)
 - Direct culture (SB)
 - Enriched culture (Enterococcosel broth)
 - Subculture (SB) plate
 - Pick 2 isolates
 - Save 1 isolate if ASVSEfm

- Ampicillin resistance selective culture
 - Direct culture (Amp-Enterococcosel) plate
 - Enriched culture (Enterococcosel broth)
 - Subculture (Amp Enterococcosel) plate
 - Pick 5 isolates
 - Save up to 5 isolates if ARVSEfm

- Vancomycin resistance selective culture
 - Direct culture (VRE)
 - Enriched culture (Van-Enterococcosel)
 - Subculture (VRE) plate
 - Pick 5 isolates
 - Save up to 5 isolates if VREfm

5 isolates sequenced
- if first positive sample and no VRE grown
- from all samples up to first VRE growth in patients who acquired VRE
- 1 isolate sequenced from all other samples

1 isolate sequenced from all other samples
Methods - Environment

• Terminal pooled swabs: one from bedside and one from bathroom
• Fortnightly from:
 – communal bathrooms and toilets
 – non-touch surfaces (air vents and HEPA filters)
 – medical devices (computers on wheels, handheld devices, etc)
• Plating on ampicillin and VRE selective media
• Sequenced 1 VREfm colony, or 1 VSEfm colony if VRE plate was negative
Recruitment and results

335 patients admitted (486 admissions)

174 (52%) patients enrolled
269 (55%) admissions

149 (86%) participants screened at least once
376 stool samples
(Median 3, IQR 2-5, range 1-8)

101 (68%) participants screened more than once

161 (48%) not enrolled
For 131/217 (60%) admissions
environmental swab obtained

For 23/25 (92%) participants
only environmental samples obtained

94/149 (63%) VREfm positive patients
212/376 (56%) VREfm positive samples

922 environmental swabs performed

116/149 (78%) AREfm positive patients
271/376 (72%) AREfm positive samples

127/149 (85%) Efm positive patients

116/149 (78%) AREfm positive patients
271/376 (72%) AREfm positive samples

94/149 (63%) VREfm positive patients
212/376 (56%) VREfm positive samples
Phylogenetic tree of 1560 isolates (1001 stool, 559 environmental)

Analysis confined to 1477 (943 stool and 534 environmental isolates) belonging to clade A1 (CC17) (95%)
Subtypes during study period

- Stool – 1st occurrence per participant
- Stool – subsequent occurrence
- Patient’s environment – 1st occurrence
- Patient’s environment – subsequent occurrence
- Communal bathroom – 1st occurrence
- Communal bathroom – subsequent occurrence
- Medical device – 1st occurrence
- Medical device – subsequent occurrence
- Non-touch areas – 1st occurrence
- Non-touch areas – subsequent occurrence

115 subtypes – 91 found in patients (median 2, range 1-6 subtypes per patient)
n=115 subtypes identified

Two major subtypes identified in 25 and 30 patients

91/115 (78.4%) in stool samples

Subtypes colonising multiple patients were more likely to be found in the hospital environment (89%) than those colonising a single patient (51%) (Fisher exact test, p<2.3x10^{-4})
<table>
<thead>
<tr>
<th></th>
<th>Number of patient-subtypes</th>
<th>Number of patients (n=101)</th>
<th>Min. SNP distance, median (IQR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acquired subtypes</td>
<td>111</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>No genomic links</td>
<td>22</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Genomic links</td>
<td>89</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>Future genomic links</td>
<td>11</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Past genomic links</td>
<td>78</td>
<td>52</td>
<td>0 (0-2)</td>
</tr>
<tr>
<td>Strong epi links</td>
<td>61</td>
<td>43</td>
<td>0 (0-1)</td>
</tr>
<tr>
<td>Bay or room overlap</td>
<td>16</td>
<td>11</td>
<td>0 (0-0)</td>
</tr>
<tr>
<td>Same bay, time gap <=7 days</td>
<td>5</td>
<td>5</td>
<td>0 (0-1)</td>
</tr>
<tr>
<td>Same ward overlap</td>
<td>32</td>
<td>24</td>
<td>0 (0-1)</td>
</tr>
<tr>
<td>Same ward, time gap <=7 days</td>
<td>8</td>
<td>8</td>
<td>2.5 (0-3)</td>
</tr>
<tr>
<td>Weak epi links</td>
<td>17</td>
<td>15</td>
<td>2 (0-2)</td>
</tr>
<tr>
<td></td>
<td>Number of patient-subtypes</td>
<td>Number of patients (n=101)</td>
<td>Min. SNP distance, median (IQR)</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---------------------------</td>
<td>----------------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>Acquired subtypes</td>
<td>111</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>No genomic links</td>
<td>22</td>
<td>19</td>
<td>-</td>
</tr>
<tr>
<td>Genomic links</td>
<td>89</td>
<td>56</td>
<td>0 (0-2)</td>
</tr>
<tr>
<td>Future genomic links</td>
<td>11</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Past genomic links</td>
<td>78</td>
<td>52</td>
<td>0 (0-2)</td>
</tr>
<tr>
<td>Strong epi links</td>
<td>61</td>
<td>43</td>
<td>0 (0-1)</td>
</tr>
<tr>
<td>Bay or room overlap</td>
<td>16</td>
<td>11</td>
<td>0 (0-0)</td>
</tr>
<tr>
<td>Same bay, time gap <=7 days</td>
<td>5</td>
<td>5</td>
<td>0 (0-1)</td>
</tr>
<tr>
<td>Same ward overlap</td>
<td>32</td>
<td>24</td>
<td>0 (0-1)</td>
</tr>
<tr>
<td>Same ward, time gap <=7 days</td>
<td>8</td>
<td>8</td>
<td>2.5 (0-3)</td>
</tr>
<tr>
<td>Weak epi links</td>
<td>17</td>
<td>15</td>
<td>2 (0-2)</td>
</tr>
</tbody>
</table>
Epidemiological relationships - Network

N=26 transmission clusters (size 2 to 8 patients)

Type of node
- Patient
- Patient's own environment
- Communal area
- Medical device
- Non-toach area
- Non-sampled patient's environment

Type of edge
- Acquired subtype with strong epidemiological link
- Index subtype with strong epidemiological link
- Acquired subtype with weak epidemiological link
- Index subtype with weak epidemiological link

Subtype colour-coding (patients involved in transmission)

- 47A (30)
- 15A (25)
- 26B (7)
- 5A (6)
- 49A (5)
- 46A (5)
- 43B (6)
- 26G (6)
- 37C (4)
- 33B (4)
- 21A (4)
- 9A (3)
- 60A (3)
- 58A (3)
- 4A (3)
- 45A (3)
- 42A (3)
- 38A (3)
- 37B (3)
- 33A (3)
- 29A (3)
- 28B (3)
- 29A (3)
- 46A (5)
- 58A (3)
- 4A (3)
- 19A (3)
- 36A (2)
- 37A (2)
- 27A (2)
- 25A (2)
- 23A (2)
- 12A (2)
- 12A (2)
Summary

- WGS provides unprecedented detail of *E. faecium* colonisation dynamics
- VREfm colonises the majority of patients admitted to the Haematology wards with evidence of mixed subtype carriage and multiple acquisition events
- Pathogen with highest rate of hospital transmission at CUH
- Spread is facilitated by contamination of communal areas and healthcare devices, and high patient turnover, movement and readmission rates
- Current infection control practices are not effective
- Improved cleaning protocols and hand hygiene are required
- Complete eradication will be difficult without draconian measures
Acknowledgements

London School of Hygiene & Tropical Medicine
• Prof. Sharon Peacock

CU Department of Medicine
• Dr Estée Török
• Beth Blane
• Plamena Naydenova
• Lois Chaparadza
• Dr Rosie Swayne
• EPIC team
• Dr Lydia Drumright

CUH Public Health England Lab
• Dr Nick Brown
• Dr David Enoch

CUH Haematology Department
• Dr Charles Crawley
• Anne Green
• Claire Cowling
• All ward nurses and healthcare assistants

Wellcome Trust Sanger Institute
• Prof. Julian Parkhill
• Dr Francesc Coll
• Dr Catherine Ludden
• Dr Kathy Raven
• Team 81
• Pathogen Informatics and Sequencing Teams
• Microreact team

Mahidol-Oxford Tropical Medicine Unit
• Dr Direk Limmathurotsakul

The Wellcome Trust

Health Innovation Challenge Fund

Copan Italia Spa for providing the swabs

The patients
How to define a subtype based on pairwise distance after removal of recombination (same sample comparisons)
Sample Genetic distance (# of SNPs)

- Same ST and 50SNP cluster
- Different ST, same 50SNP cluster
- Different ST and 50SNP cluster
- Same ST, different 50SNP cluster
Genetic distance (# of SNPs)

- Same ST and 50SNP cluster
- Different ST, same 50SNP cluster
- Different ST and 50SNP cluster
- Same ST, different 50SNP cluster

Sample
SNP threshold for inferring transmission (same and different sample comparisons for each patient over time)
Environmental sampling – VREfm positivity during study

[Bar chart showing positivity percentages for different areas and locations]
N=11/26 single transmission event of 2 patients
hospital environment not involved (1 exception)
N=15/26 transmission clusters involved 3 to 8 patients hospital environment involved (2 exc.)
N=15/26 transmission clusters involved 3 to 8 patients
hospital environment involved (2 exc.)
Phylogenetic tree of 1560 isolates (1001 stool, 559 environmental)

Analysis confined to 1477 (943 stool and 534 environmental isolates) belonging to clade A1 (CC17) (95%)
Stool positivity increased over time

33 VREfm-negative patients (33%) acquired VREfm
41 patients (41%) acquired ARVSEfm and/or ARVREfm